论文标题
光谱图聚类通过期望 - 溶液算法
Spectral graph clustering via the Expectation-Solution algorithm
论文作者
论文摘要
随机BlockModel(SBM)建模网络中节点的连接性和间距分子集之间的连接性。先前的工作表明,SBM的邻接光谱嵌入(ASE)和Laplacian光谱嵌入(LSE)的行均在法律上汇合到该组件弯曲指数家族的高斯混合物。通过完整高斯混合模型(GMM)的期望最大临时(EM)算法估计的最大似然估计可以执行群集图节点的任务,尽管不吸引组件的曲率。指出EM是期望算法(ES)算法的特殊情况,我们提出了两种ES算法,使我们能够充分利用这些弯曲的结构。在介绍了一般曲面高斯混合物的ES算法之后,我们开发了与ASE和LSE限制分布相对应的算法。通过人工SBM和脑连接组SBM模拟,通过我们的ES算法进行聚类图节点可以改善EM的em,以实现全GMM的整个设置。
The stochastic blockmodel (SBM) models the connectivity within and between disjoint subsets of nodes in networks. Prior work demonstrated that the rows of an SBM's adjacency spectral embedding (ASE) and Laplacian spectral embedding (LSE) both converge in law to Gaussian mixtures where the components are curved exponential families. Maximum likelihood estimation via the Expectation-Maximization (EM) algorithm for a full Gaussian mixture model (GMM) can then perform the task of clustering graph nodes, albeit without appealing to the components' curvature. Noting that EM is a special case of the Expectation-Solution (ES) algorithm, we propose two ES algorithms that allow us to take full advantage of these curved structures. After presenting the ES algorithm for the general curved-Gaussian mixture, we develop those corresponding to the ASE and LSE limiting distributions. Simulating from artificial SBMs and a brain connectome SBM reveals that clustering graph nodes via our ES algorithms can improve upon that of EM for a full GMM for a wide range of settings.