论文标题
当标态曲率是非负的时,界定不变频谱
Bounding the invariant spectrum when the scalar curvature is non-negative
论文作者
论文摘要
在紧凑的riemannian歧管上,我们研究了普通laplacian的不变光谱。对于小圈的kaehler度量,或者在球体上的旋转对称度量标准,我们为不变频谱的所有特征值产生上限,假设非负标量曲率。
On compact Riemannian manifolds with a large isometry group we investigate the invariant spectrum of the ordinary Laplacian. For either a toric Kaehler metric, or a rotationally-symmetric metric on the sphere, we produce upper bounds for all eigenvalues of the invariant spectrum assuming non-negative scalar curvature.