论文标题
单粒子冷冻EM的计算方法
Computational Methods for Single-Particle Cryo-EM
论文作者
论文摘要
单粒子电子冷冻显微镜(Cryo-EM)是一种越来越流行的技术,用于阐明蛋白质的三维结构和近原子分辨率的其他具有生物学意义的复合物。这是一种不需要结晶的成像方法,可以在其本地状态下捕获分子。 在单粒子的冷冻EM中,三维分子结构需要从单个分子的许多嘈杂的二维层析成像投影中确定,其方向和位置尚不清楚。高水平的噪声和未知姿势参数是使重建成为具有挑战性的计算问题的两个关键要素。更具挑战性的是,当成像的个体分子在不同的构象状态下,结构可变性和柔性运动的推断。 这篇综述讨论了通过统计推断,机器学习和信号处理的单粒子冷冻EM及其指导原则来确定结构的计算方法,这些原理在许多其他数据科学应用中也起着重要作用。
Single-particle electron cryomicroscopy (cryo-EM) is an increasingly popular technique for elucidating the three-dimensional structure of proteins and other biologically significant complexes at near-atomic resolution. It is an imaging method that does not require crystallization and can capture molecules in their native states. In single-particle cryo-EM, the three-dimensional molecular structure needs to be determined from many noisy two-dimensional tomographic projections of individual molecules, whose orientations and positions are unknown. The high level of noise and the unknown pose parameters are two key elements that make reconstruction a challenging computational problem. Even more challenging is the inference of structural variability and flexible motions when the individual molecules being imaged are in different conformational states. This review discusses computational methods for structure determination by single-particle cryo-EM and their guiding principles from statistical inference, machine learning, and signal processing that also play a significant role in many other data science applications.