论文标题
质心几何形状中的特征匹配和热流
Feature Matching and Heat Flow in Centro-Affine Geometry
论文作者
论文摘要
在本文中,我们研究了质心几何形状中的差异不变性和不变的热流,证明后者等同于无粘性汉堡的方程。此外,我们应用质心不变性来开发不变算法以匹配图像中出现的对象的特征。我们表明,所得算法与广泛应用的比例不变特征变换(SIFT),加快稳健特征(冲浪)和仿射式(ASIFT)方法的比较。
In this paper, we study the differential invariants and the invariant heat flow in centro-affine geometry, proving that the latter is equivalent to the inviscid Burgers' equation. Furthermore, we apply the centro-affine invariants to develop an invariant algorithm to match features of objects appearing in images. We show that the resulting algorithm compares favorably with the widely applied scale-invariant feature transform (SIFT), speeded up robust features (SURF), and affine-SIFT (ASIFT) methods.