论文标题
几张图像到图像翻译的半监督学习
Semi-supervised Learning for Few-shot Image-to-Image Translation
论文作者
论文摘要
在过去的几年中,未配对的图像到图像翻译见证了显着的进步。尽管最新方法能够生成逼真的图像,但它们至关重要依赖大量标记的图像。最近,某些方法解决了几乎没有图像到图像翻译的具有挑战性的设置,从而减少了推理期间目标域的标记数据要求。在这项工作中,我们进一步迈进了一步,并减少了培训期间从源域中的所需标记数据的量。为此,我们建议通过耐噪声标记程序应用半监督的学习。我们还应用了一个周期一致性约束,以从同一数据集或外部的未标记图像中进一步利用信息。此外,我们提出了几种结构修改,以促进在这种情况下的图像翻译任务。我们的半监督方法用于几片图像翻译(称为SEMIT),使用源标签的10%在四个不同的数据集上实现了出色的结果,并且仅使用20%标记的数据匹配主要全面监督竞争对手的性能。我们的代码和模型公开:https://github.com/yaxingwang/semit。
In the last few years, unpaired image-to-image translation has witnessed remarkable progress. Although the latest methods are able to generate realistic images, they crucially rely on a large number of labeled images. Recently, some methods have tackled the challenging setting of few-shot image-to-image translation, reducing the labeled data requirements for the target domain during inference. In this work, we go one step further and reduce the amount of required labeled data also from the source domain during training. To do so, we propose applying semi-supervised learning via a noise-tolerant pseudo-labeling procedure. We also apply a cycle consistency constraint to further exploit the information from unlabeled images, either from the same dataset or external. Additionally, we propose several structural modifications to facilitate the image translation task under these circumstances. Our semi-supervised method for few-shot image translation, called SEMIT, achieves excellent results on four different datasets using as little as 10% of the source labels, and matches the performance of the main fully-supervised competitor using only 20% labeled data. Our code and models are made public at: https://github.com/yaxingwang/SEMIT.