论文标题

受控Moreau的最小时间功能

The minimum time function for the controlled Moreau's Sweeping Process

论文作者

Michele, Palladino, Giovanni, Colombo

论文摘要

令$ c(t)$,$ t \ geq0 $为Lipschitz设置值地图,带有闭合和(轻度非)凸值,$ f(t,x,x,u)$是地图,LipsChitz连续W.R.T. $ x $。我们考虑在$ c $的图中达到目标$ s $的问题。 $ t(t_ {0},x_ {0})$。 Dynamics $(\ star)$称为干扰(或Moreau)过程。我们为$ t $提供了足够的条件,可以是有限的,连续的,并通过汉密尔顿 - 雅各比的不平等来表征$ t $。我们方法的关键工具是$(\ star)$的$ s $的弱和强流不变性的特征。由于存在普通的锥体$ n_ {c(t)}(x)$,因此$(\ star)$的右侧侧面隐含在c(t)$中隐含状态约束$ x(t)\,并且与$ x $相对于$ x $而不是Lipschitz。

Let $C(t)$, $t\geq0$ be a Lipschitz set-valued map with closed and (mildly non-)convex values and $f(t, x,u)$ be a map, Lipschitz continuous w.r.t. $x$. We consider the problem of reaching a target $S$ within the graph of $C$ subject to the differential inclusion \[ (\star)\qquad \dot{x} \in -N_{C(t)}(x) + G(t,x) \] starting from $x_{0}\in C(t_{0})$ in the minimum time $T(t_{0},x_{0})$. The dynamics $(\star)$ is called a perturbed sweeping (or Moreau) process. We give sufficient conditions for $T$ to be finite and continuous and characterize $T$ through Hamilton-Jacobi inequalities. Crucial tools for our approach are characterizations of weak and strong flow invariance of a set $S$ subject to $(\star)$. Due to the presence of the normal cone $N_{C(t)}(x)$, the right hand side of $(\star)$ contains implicitly the state constraint $x(t)\in C(t)$ and is not Lipschitz continuous with respect to $x$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源