论文标题
带压缩流动的无效流动的物理真空界限的时间弥漫
Time-Asymptotics of Physical Vacuum Free Boundaries for Compressible Inviscid Flows with Damping
论文作者
论文摘要
在本文中,我们证明了移动真空边界的时间弥漫的主要期限,可压缩的无关流量和阻尼的可压缩流,即Barenblatt自相似的解决方案对通过Darcy的定律简化了相应的多孔媒体方程式,这是通过Darcy的定律而获得的,以及由于质量和三分线的动作而导致的质量中心的转移,并可能移动。这对解决相应真空边界问题的解决方案的大时间渐近行为进行了完整描述。本文获得的结果是关于可压缩的无粘性流体的物理真空边界的庞大渐进性,据我们所知。
In this paper, we prove the leading term of time-asymptotics of the moving vacuum boundary for compressible inviscid flows with damping to be that for Barenblatt self-similar solutions to the corresponding porous media equations obtained by simplifying momentum equations via Darcy's law plus the possible shift due to the movement of the center of mass, in the one-dimensional and three-dimensional spherically symmetric motions, respectively. This gives a complete description of the large time asymptotic behavior of solutions to the corresponding vacuum free boundary problems. The results obtained in this paper are the first ones concerning the large time asymptotics of physical vacuum boundaries for compressible inviscid fluids, to the best of our knowledge.