论文标题

使用数值PDE问题求解器计算Markov修饰流体模型的第一个通行时间

Computing first passage times for Markov-modulated fluid models using numerical PDE problem solvers

论文作者

Bhaumik, Debarati, Boon, Marko A. A., Crommelin, Daan, Koren, Barry, Zwart, Bert

论文摘要

在连续时间马尔可夫链中计算第一通道概率的一种流行方法是通过数字颠倒其拉普拉斯变换。过去几十年,科学计算社区开发了出色的数值方法来解决由部分微分方程(PDE)控制的问题,因此在此目的无需使用Laplace转换的可用性。在这项研究中,我们证明了数值PDE问题求解器适合计算第一通道时间,并且对于此目的而言可能非常有效。通过进行广泛的计算实验,我们表明现代PDE问题求解器即使有可用的转换,也可以超越数值laplace变换反转。当拉普拉斯变换是明确的(例如,不需要计算本本系统)时,数值变换反转仍然是主要选择方法。

A popular method to compute first-passage probabilities in continuous-time Markov chains is by numerically inverting their Laplace transforms. Past decades, the scientific computing community has developed excellent numerical methods for solving problems governed by partial differential equations (PDEs), making the availability of a Laplace transform not necessary here for computational purposes. In this study we demonstrate that numerical PDE problem solvers are suitable for computing first passage times, and can be very efficient for this purpose. By doing extensive computational experiments, we show that modern PDE problem solvers can outperform numerical Laplace transform inversion, even if a transform is available. When the Laplace transform is explicit (e.g. does not require the computation of an eigensystem), numerical transform inversion remains the primary method of choice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源