论文标题
易熔的数字和Peano算术
Fusible numbers and Peano Arithmetic
论文作者
论文摘要
受涉及保险丝的数学谜语的启发,我们定义了“熔体数字”,如下所示:$ 0 $是fusible的,每当$ x,y $都与$ | y-x | <1 $熔解时,数字$(x+y+y+1)/2 $也是熔解的。我们证明,按$ \ Mathbb r $上订购的一组易熔号已订购良好,订单类型$ \ varepsilon_0 $。此外,我们证明,沿实际线路的易熔数密度以非常快的速度增长:让$ g(n)$是间隔$ [n,\ infty)$中连续的熔融数字之间的最大差距,我们有$ g(n)^{-1} {-1}} {-1} {-1} \ ge f _ $ c $ c $ c $ c $ c $ c $ c $ c $ c。 $f_α$表示快速增长的层次结构。最后,我们得出了一些可以在Peano Arithmetic中制定但无法证明的真实陈述,其风味与以前已知的陈述不同:PA无法证明“对于每个自然数量$ n $,都有大于$ n $的最小的熔融数字”。另外,请考虑算法“ $ m(x)$:如果$ x <0 $返回$ -x $,else返回$ m(x-m(x-1)/2 $”。然后,$ m $终止了实际输入,尽管PA无法证明“ $ m $在所有自然输入上终止”。
Inspired by a mathematical riddle involving fuses, we define the "fusible numbers" as follows: $0$ is fusible, and whenever $x,y$ are fusible with $|y-x|<1$, the number $(x+y+1)/2$ is also fusible. We prove that the set of fusible numbers, ordered by the usual order on $\mathbb R$, is well-ordered, with order type $\varepsilon_0$. Furthermore, we prove that the density of the fusible numbers along the real line grows at an incredibly fast rate: Letting $g(n)$ be the largest gap between consecutive fusible numbers in the interval $[n,\infty)$, we have $g(n)^{-1} \ge F_{\varepsilon_0}(n-c)$ for some constant $c$, where $F_α$ denotes the fast-growing hierarchy. Finally, we derive some true statements that can be formulated but not proven in Peano Arithmetic, of a different flavor than previously known such statements: PA cannot prove the true statement "For every natural number $n$ there exists a smallest fusible number larger than $n$." Also, consider the algorithm "$M(x)$: if $x<0$ return $-x$, else return $M(x-M(x-1))/2$." Then $M$ terminates on real inputs, although PA cannot prove the statement "$M$ terminates on all natural inputs."