论文标题

图形结构域的适应性对齐不变的脑表面分割

Graph Domain Adaptation for Alignment-Invariant Brain Surface Segmentation

论文作者

Gopinath, Karthik, Desrosiers, Christian, Lombaert, Herve

论文摘要

大脑的不同皮质几何形状为其分析带来了许多挑战。最近的发展已通过皮质数据的图形汇总直接使学习表面数据直接学习。但是,当当前的图形学习算法在脑表面数据之间跨受试者未对准时确实会失败,从而影响他们处理来自多个域数据的能力。对抗训练被广泛用于域的适应性,以改善范围内的分割性能。在本文中,利用对抗性训练以学习不一致的图形对准的表面数据。这种新颖的方法包括一个分段器,该分段使用了一组图卷积层,可以直接跨源域中的大脑表面进行分析,以及一个预测从分段的图形域的歧视器。更确切地说,所提出的对抗网络学会了跨越源和目标域之间的分析。我们证明了对从MindBoggle提取的多个目标域应用的非对抗性训练策略的绩效的平均改善,这是最大的公开手动标记的脑表面数据集。

The varying cortical geometry of the brain creates numerous challenges for its analysis. Recent developments have enabled learning surface data directly across multiple brain surfaces via graph convolutions on cortical data. However, current graph learning algorithms do fail when brain surface data are misaligned across subjects, thereby affecting their ability to deal with data from multiple domains. Adversarial training is widely used for domain adaptation to improve the segmentation performance across domains. In this paper, adversarial training is exploited to learn surface data across inconsistent graph alignments. This novel approach comprises a segmentator that uses a set of graph convolution layers to enable parcellation directly across brain surfaces in a source domain, and a discriminator that predicts a graph domain from segmentations. More precisely, the proposed adversarial network learns to generalize a parcellation across both, source and target domains. We demonstrate an 8% mean improvement in performance over a non-adversarial training strategy applied on multiple target domains extracted from MindBoggle, the largest publicly available manually-labeled brain surface dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源