论文标题

功能数据的变异模式分类

Variation Pattern Classification of Functional Data

论文作者

Jiao, Shuhao, Frostig, Ron D., Ombao, Hernando

论文摘要

本文提出了一种用于功能数据的新分类方法。这项工作是出于确定区分局部现场电位(LFP)的神经系统条件的特征而进行的。无论情况如何,这些局部域电势的平均值为零,因此这些随机过程的第一矩没有歧视能力。我们提出了变异模式分类(VPC)方法{使用(自动)协方差算子作为区分特征},并使用Hilbert-Schmidt Norm来测量不同组的(自动 - )协方差操作员之间的差异。事实证明,所提出的VPC方法对差异很敏感,{可能导致分类率更高}。一个重要的创新在于缩小维度,其中VPC方法数据适时确定了解释主要差异的基本函数(歧视性功能)。此外,所选的判别特征函数提供了有关不同组之间差异的见解,因为它们揭示了分化组的变异模式的特征。建立了一致性属性,此外,模拟研究和大鼠脑LFP轨迹的分析在经验上证明了该方法的优势和有效性。

A new classification method for functional data is proposed in this paper. This work is motivated by the need to identify features that discriminate between neurological conditions on which local field potentials (LFPs) were recorded. Regardless of the condition, these local field potentials have zero mean and thus the first moments of these random processes do not have discriminating power. We propose the variation pattern classification (VPC) method {which employs the (auto-)covariance operators as the discriminating features} and uses the Hilbert-Schmidt norm to measure the discrepancy between the (auto-)covariance operators of different groups. The proposed VPC method is demonstrated to be sensitive to the discrepancy, {potentially leading to a higher rate of classification}. One important innovation lies in the dimension reduction where the VPC method data-adaptively determines the basis functions (discriminative feature functions) that account for the major discrepancy. In addition, the selected discriminative feature functions provide insights on the discrepancy between different groups because they reveal the features of variation pattern that differentiate groups. Consistency properties are established and, furthermore, simulation studies and the analysis of rat brain LFP trajectories empirically demonstrate the advantages and effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源