论文标题

用图形套索的多个供体流域的每日流量估算

Estimation of daily streamflow from multiple donor catchments with Graphical Lasso

论文作者

Villalba, German A., Liang, Xu, Liang, Yao

论文摘要

引入了一种新颖的算法,以改善基于图形模型中条件独立性的概念,在不完整记录的站点上对每日流量时间序列进行了估计。目的是填补历史数据的空白或扩展流量站的记录,不再在运行中,甚至估算了未涂层的位置。这是通过首先选择水标准网络中的相关站点作为参考(供体)站来实现的,然后使用它们来推断丢失的数据。选择过程将水文网络中的完全连接的水流站转换为使用高斯图形模型以精确矩阵表示的稀疏连接网络。底层图编码有条件的独立条件,该条件允许从研究区域的完全连接的水鉴定网络确定最佳的参考站集。通过使用具有L1-norm正则化参数和阈值参数的图形套索算法施加精度矩阵的稀疏性。这两个参数由多目标优化过程确定。此外,提出了基于条件独立概念的算法,以允许删除信息损失最少的仪表。我们的方法通过从1950年1月1日至1980年12月31日在俄亥俄河流域之间的34个仪表网络网络的每日流量数据进行说明。我们的结果表明,与基于距离或配对相关性的广泛使用方法相比,使用条件独立条件的使用可以导致更准确的流量估计。

A novel algorithm is introduced to improve estimations of daily streamflow time series at sites with incomplete records based on the concept of conditional independence in graphical models. The goal is to fill in gaps of historical data or extend records at streamflow stations no longer in operation or even estimate streamflow at ungauged locations. This is achieved by first selecting relevant stations in the hydrometric network as reference (donor) stations and then using them to infer the missing data. The selection process transforms fully connected streamflow stations in the hydrometric network into a sparsely connected network represented by a precision matrix using a Gaussian graphical model. The underlying graph encodes conditional independence conditions which allow determination of an optimum set of reference stations from the fully connected hydrometric network for a study area. The sparsity of the precision matrix is imposed by using the Graphical Lasso algorithm with an L1-norm regularization parameter and a thresholding parameter. The two parameters are determined by a multi-objective optimization process. In addition, an algorithm based on the conditional independence concept is presented to allow a removal of gauges with the least loss of information. Our approaches are illustrated with daily streamflow data from a hydrometric network of 34 gauges between 1 January 1950 and 31 December 1980 over the Ohio River basin. Our results show that the use of conditional independence conditions can lead to more accurate streamflow estimates than the widely used approaches which are based on either distance or pair-wise correlation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源