论文标题

整数量子厅过渡的边缘状态临界行为

Edge state critical behavior of the integer quantum Hall transition

论文作者

Puschmann, Martin, Cain, Philipp, Schreiber, Michael, Vojta, Thomas

论文摘要

整数量子厅效应具有范式量子相变。尽管工作了数十年,但实验性,数值和分析研究尚未就统一的对临界行为的理解达成共识。基于数值绿色函数方法,我们考虑了简单的正方形晶格上非相互作用无序电子的微观模型中的量子霍尔转变。在带状的几何形状中,拓扑诱导的边缘状态沿系统边缘延伸,并作为能量的函数进行定位 - 偏置转变。我们研究了最低兰道频段中的边界临界行为,并将其与最近的紧密结合方法进行比较[物理。 Rev. B 99,121301(R)(2019)]以及对量子厅过渡的最新研究,均具有开放和周期性的边界条件。

The integer quantum Hall effect features a paradigmatic quantum phase transition. Despite decades of work, experimental, numerical, and analytical studies have yet to agree on a unified understanding of the critical behavior. Based on a numerical Green function approach, we consider the quantum Hall transition in a microscopic model of non-interacting disordered electrons on a simple square lattice. In a strip geometry, topologically induced edge states extend along the system rim and undergo localization-delocalization transitions as function of energy. We investigate the boundary critical behavior in the lowest Landau band and compare it with a recent tight-binding approach to the bulk critical behavior [Phys. Rev. B 99, 121301(R) (2019)] as well as other recent studies of the quantum Hall transition with both open and periodic boundary conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源