论文标题

正交归纳矩阵完成

Orthogonal Inductive Matrix Completion

论文作者

Ledent, Antoine, Alves, Rodrigo, Kloft, Marius

论文摘要

我们提出了基于多个正交侧信息术语的总和以及核声称正则化的总和,提出了正交归纳矩阵完成(OMIC),这是一种可解释的矩阵完成方法。 这种方法使我们能够注入有关地面真相矩阵的奇异向量的先验知识。 我们通过可证明的收敛算法优化方法,该算法同时优化了模型的所有组件。我们在无分布环境中研究了我们方法的概括能力,并且在采样分布允许边缘统一的情况下,学习可以保证学习在这两种情况下都可以随着注射知识的质量而提高。作为我们框架的特殊情况,我们提出了可以以联合和添加剂方式结合用户和项目偏见或社区信息的模型。 我们分析了OMIC在几个合成和真实数据集上的性能。 在具有用户偏见相关性的滑动比例的合成数据集上,我们表明,与其他方法相比,OMIC可以更好地适应不同的制度。在包含用户/项目建议和相关侧面信息的现实生活数据集中,我们发现OMIC超过了最先进的功能,并带来了更大的解释性。

We propose orthogonal inductive matrix completion (OMIC), an interpretable approach to matrix completion based on a sum of multiple orthonormal side information terms, together with nuclear-norm regularization. The approach allows us to inject prior knowledge about the singular vectors of the ground truth matrix. We optimize the approach by a provably converging algorithm, which optimizes all components of the model simultaneously. We study the generalization capabilities of our method in both the distribution-free setting and in the case where the sampling distribution admits uniform marginals, yielding learning guarantees that improve with the quality of the injected knowledge in both cases. As particular cases of our framework, we present models which can incorporate user and item biases or community information in a joint and additive fashion. We analyse the performance of OMIC on several synthetic and real datasets. On synthetic datasets with a sliding scale of user bias relevance, we show that OMIC better adapts to different regimes than other methods. On real-life datasets containing user/items recommendations and relevant side information, we find that OMIC surpasses the state-of-the-art, with the added benefit of greater interpretability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源