论文标题
通用摩尔阅读的纠缠熵
Entanglement Entropy of Generalized Moore-Read Fractional Quantum Hall State Interfaces
论文作者
论文摘要
物质的拓扑阶段的特征是,存在普遍的,恒定的贡献对被称为拓扑纠缠熵(TEE)的纠缠熵。可以通过将纠缠切割作为物理切割,将所得无间隙的边缘与明确的隧道术语耦合,并计算两个边缘之间的纠缠,从而通过“切割”方法将TEE计算为Abelian阶段。我们提供了将这种方法扩展到非亚伯利亚拓扑阶段的第一步,重点是填充分数$ν= 1/n $的广义摩尔阅读(MR)分数量子厅状态。我们考虑在不同的MR状态之间的接口,写下明确的间隙相互作用,我们使用Anyon冷凝图来激励这些相互作用,并计算沿界面沿界面切割的纠缠熵。我们的工作为理解任何人的凝结,非亚伯阶段的空白界面和TEE之间的联系提供了新的见解。
Topologically ordered phases of matter can be characterized by the presence of a universal, constant contribution to the entanglement entropy known as the topological entanglement entropy (TEE). The TEE can been calculated for Abelian phases via a "cut-and-glue" approach by treating the entanglement cut as a physical cut, coupling the resulting gapless edges with explicit tunneling terms, and computing the entanglement between the two edges. We provide a first step towards extending this methodology to non-Abelian topological phases, focusing on the generalized Moore-Read (MR) fractional quantum Hall states at filling fractions $ν=1/n$. We consider interfaces between different MR states, write down explicit gapping interactions, which we motivate using an anyon condensation picture, and compute the entanglement entropy for an entanglement cut lying along the interface. Our work provides new insight towards understanding the connections between anyon condensation, gapped interfaces of non-Abelian phases, and TEE.