论文标题
驱动的三级Lambda系统的时间开发:案例研究
Time development of a driven three-level lambda system: A case study
论文作者
论文摘要
具有许多能级的驱动系统如何接近其稳定状态?当基态被激光激发时,通过研究具有三个能级的系统来获得见解。这三个能量水平的时间依赖性职业概率表明学生如何及时发展。当包括放松时,职业概率来自liouville-von neumann方程的数值解决方案。相互作用图片,旋转波近似和共振假设的结合允许在数值上找到liouville-von neumann方程的特征值,并在某些限制下以封闭形式找到。这两种方法是互补的,可以帮助学生了解时间依赖的系统。此外,特征值允许短期和长期职业概率连接到放松参数和激光电场的大小。因此,该模型三级系统阐明了驱动系统随着时间的流逝的行为,并为研究时间依赖性系统的学生提供指导。
How does a driven system with many energy levels approach its steady state? Insights are gained by studying a system with three energy levels when the ground state is excited by a laser. The time-dependent occupation probabilities of the three energy levels show students how the system develops in time. The occupation probabilities come from the numerical solution of the Liouville-von Neumann equations for the density operator matrix elements when relaxation is included. A combination of the Interaction Picture, the Rotating Wave Approximation, and the assumption of resonance permit the eigenvalues of the Liouville-von Neumann equations to be found numerically and in closed-form in certain limits. The two methods are complementary and help students understand time-dependent systems. In addition, the eigenvalues allow the short-time and the long-time occupation probabilities to be connected to the relaxation parameters and the magnitude of the laser's electric field. Thus, this model three-level system illuminates how a driven system behaves over time and provides guidance for students studying time-dependent systems.