论文标题
马尔可夫耗散的Lipkin-Meshkov-Glick模型的玻色症表示
Bosonic representation of a Lipkin-Meshkov-Glick model with Markovian dissipation
论文作者
论文摘要
我们研究了马尔可夫耗散存在的Lipkin-Meshkov-Glick模型的动力学,重点是延迟时间动力学和热平衡方法。利用对相应的Lindblad主方程的载体表示,我们在弱解散极限中使用堕落的扰动理论来分析获得Liouvillian超级操作器的特征值和特征向量,从而依次可以访问封闭形式的表达式的表达式和观察者的封闭形式的表达式和观察者。我们的方法对大型系统有效,但要考虑到无限系统结果的领先有限尺寸校正。作为一种应用,我们表明,耗散的lipkin-meshkov-glick模型通过通过叠加阻尼振荡的热状态的连续体叠加,直到最终达到平衡状态,直到最终达到平衡状态,其温度通常与浴室温度不同。我们通过比较确切的数值结果来讨论我们的分析技术的局限性。
We study the dynamics of a Lipkin-Meshkov-Glick model in the presence of Markovian dissipation, with a focus on late-time dynamics and the approach to thermal equilibrium. Making use of a vectorized bosonic representation of the corresponding Lindblad master equation, we use degenerate perturbation theory in the weak-dissipation limit to analytically obtain the eigenvalues and eigenvectors of the Liouvillian superoperator, which in turn give access to closed-form analytical expressions for the time evolution of the density operator and observables. Our approach is valid for large systems, but takes into account leading-order finite-size corrections to the infinite-system result. As an application, we show that the dissipative Lipkin-Meshkov-Glick model equilibrates by passing through a continuum of thermal states with damped oscillations superimposed, until finally reaching an equilibrium state with a temperature that in general differs from the bath temperature. We discuss limitations of our analytic techniques by comparing to exact numerical results.