论文标题
扰动的DE RHAM复合物的局部指数密度
The local index density of the perturbed de Rham complex
论文作者
论文摘要
歧管上的封闭1形式的$θ$诱导了de〜rham复合体的扰动$d_θ$。这种扰动最初是针对精确的$θ$引入的,后来由Novikov扩展到任意关闭$θ$的情况。一旦选择了Riemannian公制,就可以在Riemannian歧管上获得扰动的Laplacian $δ_θ$,并获得了De〜Rham复合物的相应扰动局部索引密度。不变理论用于表明该局部指数密度实际上不取决于$θ$。如果尺寸$ m $奇怪,它会消失,如果$ m $甚至是欧拉的形式。 (第一作者Kordyukov和Leichtnam(2020)先前使用其他方法建立了此结果)。扭曲的De〜Rham复合物的高阶热痕量渐近物显示出对$θ$的非平地依赖性,因此这种刚性结果特定于局部指数密度。该结果扩展到具有适当边界条件的边界的歧管情况。还建立了$d_θ$的lefschetz跟踪公式的模棱两可的版本;在这两种情况下,扭曲1形式$θ$输入。令$φ$为$ \ bar \ partial $封闭$ 1 $ - type $(0,1)$在Riemann Surface上。类似地,人们可以使用$φ$来定义扭曲的Dolbeault综合体。与de〜rham设置相反,扭曲的多尔贝特综合体的局部索引密度确实表现出对扭曲的$ \ bar \ partial $ claped $ claped $ claped $ $φ$的非平凡依赖性。
A closed 1-form $Θ$ on a manifold induces a perturbation $d_Θ$ of the de~Rham complex. This perturbation was originally introduced Witten for exact $Θ$, and later extended by Novikov to the case of arbitrary closed $Θ$. Once a Riemannian metric is chosen, one obtains a perturbed Laplacian $Δ_Θ$ on a Riemannian manifold and a corresponding perturbed local index density for the de~Rham complex. Invariance theory is used to show that this local index density in fact does not depend on $Θ$; it vanishes if the dimension $m$ is odd, and it is the Euler form if $m$ is even. (The first author, Kordyukov, and Leichtnam (2020) established this result previously using other methods). The higher order heat trace asymptotics of the twisted de~Rham complex are shown to exhibit non-trivial dependence on $Θ$ so this rigidity result is specific to the local index density. This result is extended to the case of manifolds with boundary where suitable boundary conditions are imposed. An equivariant version giving a Lefschetz trace formula for $d_Θ$ is also established; in neither instance does the twisting 1-form $Θ$ enter. Let $Φ$ be a $\bar\partial$ closed $1$-form of type $(0,1)$ on a Riemann surface. Analogously, one can use $Φ$ to define a twisted Dolbeault complex. By contrast with the de~Rham setting, the local index density for the twisted Dolbeault complex does exhibit a non-trivial dependence upon the twisting $\bar\partial$-closed 1-form $Φ$.