论文标题
病毒扩张中旋转量子物质的热力学
Thermodynamics of rotating quantum matter in the virial expansion
论文作者
论文摘要
我们表征了两(2D)和三维(3D)各向同性谐波诱捕电势的旋转玻色子和费米的高温热力学。我们首先通过分析计算非互动情况的所有$ n $的常规病毒系数$ b_n $,作为陷阱和旋转频率的功能。我们还报告了角度动量和相关惯性矩的病毒系数。使用BN系数,我们分析了缩减的极限(其中角频率与捕获频率匹配),并明确地得出分区函数的限制形式,从热力学的角度显示2D和3D病例如何有效地均匀地均匀2D系统。为了在存在弱相互作用的情况下应对病毒系数,我们实施了粗糙的时间晶格近似,并获得高达三阶病毒系数。
We characterize the high-temperature thermodynamics of rotating bosons and fermions in two- (2D) and three-dimensional (3D) isotropic harmonic trapping potentials. We begin by calculating analytically the conventional virial coefficients $b_n$ for all $n$ in the noninteracting case, as functions of the trapping and rotational frequencies. We also report on the virial coefficients for the angular momentum and associated moment of inertia. Using the bn coefficients, we analyze the deconfined limit (in which the angular frequency matches the trapping frequency) and derive explicitly the limiting form of the partition function, showing from the thermodynamic standpoint how both the 2D and 3D cases become effectively homogeneous 2D systems. To tackle the virial coefficients in the presence of weak interactions, we implement a coarse temporal lattice approximation and obtain virial coefficients up to third order.