论文标题

使用逆变器探测的MILP方法用于分配网格拓扑识别

An MILP Approach for Distribution Grid Topology Identification using Inverter Probing

论文作者

Taheri, Sina, Kekatos, Vassilis, Cavraro, Guido

论文摘要

尽管了解馈线拓扑和线阻抗是解决任何网格优化任务的先决条件,但实用程序通常在其电网资产上有限或过时的信息。鉴于智能逆变器的猖ramp,我们以前曾提倡使用诱导的电压响应来揭示其电源以揭示基础网格拓扑。在近似网格模型下,扰动的功率注射和收集的电压偏差遵守线性回归设置,其中未知是线电阻的向量。在此模型的基础上,拓扑处理可以分为两个步骤。鉴于候选径向拓扑,可以通过在探测数据上拟合最小二乘(LS)来估计线电阻。然后可以选择达到最佳拟合的拓扑。为了避免评估许多候选拓扑,这种两步方法是使用McCormick放松的综合构成线性程序(MILP)独特配合的。如果恢复的拓扑不是径向,那么一秒钟在计算上要求更高的MILP仅将搜索仅限于径向拓扑中。数值测试解释了拓扑恢复如何取决于噪声水平和探测持续时间,并证明了第一个简单的MILP在90%的测试病例中产生树拓扑。

Although knowing the feeder topology and line impedances is a prerequisite for solving any grid optimization task, utilities oftentimes have limited or outdated information on their electric network assets. Given the rampant integration of smart inverters, we have previously advocated perturbing their power injections to unveil the underlying grid topology using the induced voltage responses. Under an approximate grid model, the perturbed power injections and the collected voltage deviations obey a linear regression setup, where the unknown is the vector of line resistances. Building on this model, topology processing can be performed in two steps. Given a candidate radial topology, the line resistances can be estimated via a least-squares (LS) fit on the probing data. The topology attaining the best fit can be then selected. To avoid evaluating the exponentially many candidate topologies, this two-step approach is uniquely formulated as a mixed-integer linear program (MILP) using the McCormick relaxation. If the recovered topology is not radial, a second, computationally more demanding MILP confines the search only within radial topologies. Numerical tests explain how topology recovery depends on the noise level and probing duration, and demonstrate that the first simpler MILP yields a tree topology in 90% of the cases tested.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源