论文标题

具有任意形状夹杂物的微观结构的两阶段重建

A Two-Stage Reconstruction of Microstructures with Arbitrarily Shaped Inclusions

论文作者

Piasecki, R., Olchawa, W., Frączek, D., Bartecka, A.

论文摘要

我们研究的主要目的是开发一种有效的方法,该方法具有广泛的应用,以重建具有任何形状(例如高度不规则的晶粒)的异质微结构。设计的方法使用多尺度的扩展熵描述符(ED),该描述量量化有限大小对象的配置的空间非均匀性程度。该技术是统计重建的先前详细熵方法的创新发展。在这里,我们讨论了二维情况,但是该方法可以推广为三个维度。在第一阶段,开发的过程创建了一组黑色合成簇,这些簇充当替代夹杂物。群集具有与目标对应物相同的单个区域和接口,但是随机形状。然后,从给定数量的易于生成的合成集群配置中,我们选择使用扩展ED定义的成本函数值最低的值。在第二阶段,我们对模拟退火(SA)的标准技术进行了重大改变。我们没有交换不同阶段的像素,而是随机移动每个选定的合成簇。为了证明该方法的准确性,我们在橡胶基质中用二氧化硅夹杂物以及水泥糊中的石头重建和分析两相微结构。结果表明,两阶段重建(TSR)方法为这些复杂的微结构提供了令人信服的实现。 TSR的优势包括易于获得合成微观结构,计算成本非常低以及在包含形状的统计上下文中令人满意的映射。最后,其简单性应极大地促进独立应用。

The main goal of our research is to develop an effective method with a wide range of applications for the statistical reconstruction of heterogeneous microstructures with compact inclusions of any shape, such as highly irregular grains. The devised approach uses multi-scale extended entropic descriptors (ED) that quantify the degree of spatial non-uniformity of configurations of finite-sized objects. This technique is an innovative development of previously elaborated entropy methods for statistical reconstruction. Here, we discuss the two-dimensional case, but this method can be generalized into three dimensions. At the first stage, the developed procedure creates a set of black synthetic clusters that serve as surrogate inclusions. The clusters have the same individual areas and interfaces as their target counterparts, but random shapes. Then, from a given number of easy-to-generate synthetic cluster configurations, we choose the one with the lowest value of the cost function defined by us using extended ED. At the second stage, we make a significant change in the standard technique of simulated annealing (SA). Instead of swapping pixels of different phases, we randomly move each of the selected synthetic clusters. To demonstrate the accuracy of the method, we reconstruct and analyze two-phase microstructures with irregular inclusions of silica in rubber matrix as well as stones in cement paste. The results show that the two-stage reconstruction (TSR) method provides convincing realizations for these complex microstructures. The advantages of TSR include the ease of obtaining synthetic microstructures, very low computational costs, and satisfactory mapping in the statistical context of inclusion shapes. Finally, its simplicity should greatly facilitate independent applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源