论文标题
悬浮最小的康托尔系统和稳定轨道的亚代词的局部琐事
Local trivializations of suspended minimal Cantor systems and the stable orbit-breaking subalgebra
论文作者
论文摘要
它引入了一个轨道破坏亚级别的类似物,以在局部紧凑的度量空间上进行自由流动,该平台在固定点和该点附近的任何中央切片的任何嵌套序列方面具有自然近似结构。结果表明,在最小的流量承认紧凑的康托中心切片的情况下,由此产生的$ c^*$ - 代数是稳定与中央切片上诱导同型同态性相关的putnam轨道破坏亚词法的稳定。
It is introduced an analogue of the orbit-breaking subalgebra for the case of free flows on locally compact metric spaces, which has a natural approximate structure in terms of a fixed point and any nested sequence of central slices around this point. It is shown that in the case of minimal flows admitting a compact Cantor central slice, the resulting $C^*$-algebra is the stabilization of the Putnam orbit-breaking subalgebra associated to the induced homeomorphism on the central slice.