论文标题

在3D-1D域上与Lagrange倍增器结合的3D-1D域上的混合尺寸PDE的分析和近似

Analysis and approximation of mixed-dimensional PDEs on 3D-1D domains coupled with Lagrange multipliers

论文作者

Kuchta, Miroslav, Laurino, Federica, Mardal, Kent-Andre, Zunino, Paolo

论文摘要

在具有不同维度的域上定义的耦合部分微分方程通常称为混合尺寸PDE。我们解决了三维(3D)和一维域上的混合尺寸PDE,从而引起了3D-1D耦合问题。从解决方案的存在和数值近似的角度来看,此类问题构成了一些挑战。对于跨维度的耦合条件,我们考虑了基本和自然条件的结合,基本上是迪里奇和诺伊曼条件的组合。为了确保对此类条件的有意义的表述,我们使用Lagrange乘数方法,适当适合混合尺寸的情况。分析了由此产生的鞍点问题的良好姿势。然后,我们解决了有限元方法框架中问题的数值近似。 Lagrange乘数空间的离散化是主要挑战。提出了几种选项,分析和比较,目的是确定离散问题的数学属性与实施数值方案的灵活性之间的良好平衡。基于数值实验的证据支持了结果。

Coupled partial differential equations defined on domains with different dimensionality are usually called mixed dimensional PDEs. We address mixed dimensional PDEs on three-dimensional (3D) and one-dimensional domains, giving rise to a 3D-1D coupled problem. Such problem poses several challenges from the standpoint of existence of solutions and numerical approximation. For the coupling conditions across dimensions, we consider the combination of essential and natural conditions, basically the combination of Dirichlet and Neumann conditions. To ensure a meaningful formulation of such conditions, we use the Lagrange multiplier method, suitably adapted to the mixed dimensional case. The well posedness of the resulting saddle point problem is analyzed. Then, we address the numerical approximation of the problem in the framework of the finite element method. The discretization of the Lagrange multiplier space is the main challenge. Several options are proposed, analyzed and compared, with the purpose to determine a good balance between the mathematical properties of the discrete problem and flexibility of implementation of the numerical scheme. The results are supported by evidence based on numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源