论文标题

通过避免避免的情况来增强控制系统对机载风能系统的弹性

Enhancing Control System Resilience for Airborne Wind Energy Systems Through Upset Condition Avoidance

论文作者

Rapp, Sebastian, Schmehl, Roland

论文摘要

机载风能(敬畏)系统是束缚的飞行设备,可在较高的海拔高度上收集风资源,而传统风力涡轮机无法使用。为了成为其他可再生能源技术的可行替代方案,敬畏系统必须长时间可靠地飞行,而无需手动干预,同时暴露于不同的风条件下。在目前的工作中,提出了一种方法,该方法可以通过预测和预防方法来增强现有的基线控制器,以提高控制器对这些外部干扰的弹性。在框架的第一部分中,沮丧的条件是系统生成的,其中给定控制器不再能够实现其目标。在第二部分中,生成的知识用于综合事先预测不适的模型。最终,这允许触发避免动作,从而使敬畏系统的运行能够导致较低的功率生产。该方法应用于系绳破裂预测和预防的特定情况。仿真结果用于证明所提出的方法确实导致了与系统相对于系统的可预测经济利益,而无需提出的基线控制器增强。

Airborne wind energy (AWE) systems are tethered flying devices that harvest wind resources at higher altitudes which are not accessible to conventional wind turbines. In order to become a viable alternative to other renewable energy technologies, AWE systems are required to fly reliably for long periods of time without manual intervention while being exposed to varying wind conditions. In the present work a methodology is presented, which augments an existing baseline controller with a prediction and prevention methodology to improve the resilience of the controller against these external disturbances. In the first part of the framework, upset conditions are systematically generated in which the given controller is no longer able to achieve its objectives. In the second part, the generated knowledge is used to synthesize a model that predicts upsets beforehand. Eventually, this allows to trigger an avoidance maneuver which keeps the AWE system operational, however, leads to a lower power production. The methodology is applied to the specific case of tether rupture prediction and prevention. Simulation results are used to demonstrate that the presented methodology leads indeed to a predictable economic benefit over systems without the proposed baseline controller augmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源