论文标题
抛物线复杂的蒙格 - 安培等方程紧凑
Parabolic complex Monge-Ampère equations on compact Hermitian manifolds
论文作者
论文摘要
我们证明了解决一般抛物线方程的长期存在和融合,不一定在不知名的函数的黑es词中凹入,这是在紧凑的Hermitian歧管上。限制函数被确定为椭圆形复合物蒙格 - 安培方程的解。
We prove the long-time existence and convergence of solutions to a general class of parabolic equations, not necessarily concave in the Hessian of the unknown function, on a compact Hermitian manifold. The limiting function is identified as the solution of an elliptic complex Monge-Ampère equation.