论文标题
Laplace-Beltrami操作员简化了高维数据集
High-Dimensional Data Set Simplification by Laplace-Beltrami Operator
论文作者
论文摘要
随着互联网和其他数字技术的开发,数据生成的速度变得比数据处理速度快得多。由于大数据通常包含大量的冗余信息,因此可以在维护其包含的关键信息的同时显着简化大数据集。在本文中,我们根据Laplace-Beltrami操作员(LBO)的特征值和特征功能开发了一种大数据简化方法。具体而言,给定一个数据集可以被视为高维空间中无组织的数据点集,构建了大数据集上定义的离散LBO,并计算其特征值和特征值。然后,提议本本征函数的局部极值和鞍点是高维空间中数据集的特征点,构成了简化的数据集。此外,我们为在高维空间中无组织的数据点设置上定义的功能开发特征点检测方法,并设计指标,以测量简化数据集的保真度到原始集合。最后,证明了示例和应用程序来验证提出方法的效率和有效性,证明数据集简化是一种使用有限的数据处理能力来处理最大尺寸数据集的方法。
With the development of the Internet and other digital technologies, the speed of data generation has become considerably faster than the speed of data processing. Because big data typically contain massive redundant information, it is possible to significantly simplify a big data set while maintaining the key information it contains. In this paper, we develop a big data simplification method based on the eigenvalues and eigenfunctions of the Laplace-Beltrami operator (LBO). Specifically, given a data set that can be considered as an unorganized data point set in high-dimensional space, a discrete LBO defined on the big data set is constructed and its eigenvalues and eigenvectors are calculated. Then, the local extremum and the saddle points of the eigenfunctions are proposed to be the feature points of a data set in high-dimensional space, constituting a simplified data set. Moreover, we develop feature point detection methods for the functions defined on an unorganized data point set in high-dimensional space, and devise metrics for measuring the fidelity of the simplified data set to the original set. Finally, examples and applications are demonstrated to validate the efficiency and effectiveness of the proposed methods, demonstrating that data set simplification is a method for processing a maximum-sized data set using a limited data processing capability.