论文标题
根据具有无限平均值的Oppenheim扩展的大量定律
On exact laws of large numbers for Oppenheim expansions with infinite mean
论文作者
论文摘要
在这项工作中,我们研究了与Oppenheim系列扩展有关的特定类别随机变量的加权部分总和的渐近行为。更确切地说,我们验证概率的收敛性以及几乎确定的收敛到严格的正常和有限常数,而无需假设任何依赖性结构或均值的存在。这种结果称为确切的弱和精确的强大定律。
In this work we investigate the asymptotic behaviour of weighted partial sums of a particular class of random variables related to Oppenheim series expansions. More precisely, we verify convergence in probability as well as almost sure convergence to a strictly positive and finite constant without assuming any dependence structure or the existence of means. Results of this kind are known as exact weak and exact strong laws.