论文标题

密集的可通话过滤器CNN用于在组织学图像中利用旋转对称性

Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in Histology Images

论文作者

Graham, Simon, Epstein, David, Rajpoot, Nasir

论文摘要

组织学图像在旋转下固有地是对称的,其中每个方向的可能出现一样。但是,这种旋转对称性并未被广泛用作现代卷积神经网络(CNN)的先验知识,从而导致数据饥饿模型,这些模型在每个方向上学习独立的特征。允许CNN为旋转等值剂可以消除从数据中学习这组转换的必要性,而是释放了模型容量,从而可以学习更多的判别特征。所需参数数量的减少也降低了过度拟合的风险。在本文中,我们建议在密集连接的框架中,将组卷积与每个滤清器的多个旋转拷贝一起使用集体卷积的密集通用过滤器CNN(DSF-CNN)。每个过滤器被定义为可靠基滤波器的线性组合,与标准过滤器相比,可以确切的旋转并减少可训练参数的数量。我们还提供了用于组织学图像分析的不同旋转 - 等值CNN的第一个深入比较,并证明了将旋转对称性编码为现代体系结构的优势。我们表明,当应用于计算病理学领域的三个不同任务时,DSF-CNN实现了最先进的性能,较少的参数:乳腺肿瘤分类,结肠腺分割和多组织核分段。

Histology images are inherently symmetric under rotation, where each orientation is equally as likely to appear. However, this rotational symmetry is not widely utilised as prior knowledge in modern Convolutional Neural Networks (CNNs), resulting in data hungry models that learn independent features at each orientation. Allowing CNNs to be rotation-equivariant removes the necessity to learn this set of transformations from the data and instead frees up model capacity, allowing more discriminative features to be learned. This reduction in the number of required parameters also reduces the risk of overfitting. In this paper, we propose Dense Steerable Filter CNNs (DSF-CNNs) that use group convolutions with multiple rotated copies of each filter in a densely connected framework. Each filter is defined as a linear combination of steerable basis filters, enabling exact rotation and decreasing the number of trainable parameters compared to standard filters. We also provide the first in-depth comparison of different rotation-equivariant CNNs for histology image analysis and demonstrate the advantage of encoding rotational symmetry into modern architectures. We show that DSF-CNNs achieve state-of-the-art performance, with significantly fewer parameters, when applied to three different tasks in the area of computational pathology: breast tumour classification, colon gland segmentation and multi-tissue nuclear segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源