论文标题
Delaunay表面的表征
A characterization of the delaunay surfaces
论文作者
论文摘要
在本文中,我们使用Alexandrov反射方法来获得嵌入的CMC毛细管环$σ^2 \ subset \ Mathbb {B}^3 $的表征。在特别是使用新策略的情况下,我们向关键catenoid提出了新的特征。准确地说,我们表明$σ\ subset \ mathbb {b}^3 $是嵌入式最小的自由边界环中的$ \ mathbb {b}^3 $中的$ \ partialσ$,以至于$ \ partialσ$是通过coordinate planes refloction不变的,然后$σ$是关键的cateNoid。这项工作是2019年撰写的第二篇作者论文的一部分。
In this paper we use the Alexandrov Reflection Method to obtain a characterization to embedded CMC capillary annulus $Σ^2 \subset \mathbb{B}^3$. In especial, but using a new strategy, we present a new characterization to the critical catenoid. Precisely, we show that $Σ\subset \mathbb{B}^3$ being an embedded minimal free boundary annulus in $\mathbb{B}^3$ such that $\partial Σ$ is invariant under reflection through a coordinates planes, then $Σ$ is the critical catenoid. This work is part of the second author thesis which was written in 2019.