论文标题

强,依赖温度的旋转轨道扭矩,重羊毛ybal $ _3 $

Strong, Temperature-Dependent Spin-Orbit Torques in Heavy Fermion YbAl$_3$

论文作者

Reynolds, Neal D, Chatterjee, Shouvik, Stiehl, Gregory M., Mittelstaedt, Joseph A., Karimeddiny, Saba, Buser, Alexander J., Schlom, Darrell G., Shen, Kyle M., Ralph, Daniel C.

论文摘要

正在研究电流生成的自旋轨道扭矩[1]来驱动磁化动力学,以实现新一代的非挥发性,低功率磁性记忆。先前的研究重点是由重金属[2-8]产生的自旋轨道扭矩,具有强烈RASHBA相互作用的界面[9,10]和拓扑绝缘子[11-14]。这些材料家族都可以使用具有非相互作用 - 电子带结构的模型来很好地描述。在这里,我们表明,在密切相关的重费材料(近托晶格系统ybal $ _ {3} $)内的电子相互作用可以提供旋转轨道扭矩的较大增强。自旋变电导率增加了大约4倍,这是从室温到YBAL $ _ {3} $($ t^* \ 37 $ K)的温度降低的函数,在较低的温度下饱和,可实现比任何重金属元素的最大值。该温度依赖性模仿了由Ytterbium 4 $ f $衍生的重型带引起的费米级别的$ t^*$的增加和饱和,如通过角度分辨光发射光谱谱图所测量的[15]。因此,我们将多体亲旋共振视为ybal $ _ {3} $的旋转轨道扭矩的大型增强的来源。我们的观察结果揭示了通过工程量子多体状态对自旋轨道扭矩操纵的新机会。

The use of current-generated spin-orbit torques[1] to drive magnetization dynamics is under investigation to enable a new generation of non-volatile, low-power magnetic memory. Previous research has focused on spin-orbit torques generated by heavy metals[2-8], interfaces with strong Rashba interactions[9,10] and topological insulators [11-14]. These families of materials can all be well-described using models with noninteracting-electron bandstructures. Here, we show that electronic interactions within a strongly correlated heavy fermion material, the Kondo lattice system YbAl$_{3}$, can provide a large enhancement in spin-orbit torque. The spin-torque conductivity increases by approximately a factor of 4 as a function of decreasing temperature from room temperature to the coherence temperature of YbAl$_{3}$ ($T^* \approx 37$ K), with a saturation at lower temperatures, achieving a maximum value greater than any heavy metal element. This temperature dependence mimics the increase and saturation at $T^*$ of the density of states at the Fermi level arising from the ytterbium 4$f$-derived heavy bands in the Kondo regime, as measured by angle-resolved photoemission spectroscopy[15]. We therefore identify the many-body Kondo resonance as the source of the large enhancement of spin-orbit torque in YbAl$_{3}$. Our observation reveals new opportunities in spin-orbit torque manipulation of magnetic memories by engineering quantum many-body states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源