论文标题

相互作用原子链中的静态扭结

Static kinks in chains of interacting atoms

论文作者

Landa, Haggai, Cormick, Cecilia, Morigi, Giovanna

论文摘要

我们理论上分析了通过排斥幂律势相互作用的颗粒链中拓扑孤子的方程,并受周期性晶格的限制。从离散模型开始,我们执行梯度扩展,并在功率法指数$ n \ ge 1 $的连续限制中获得扭结方程。幂律相互作用修改了正弦 - 戈登方程,从而导致系数重新乘以第二个衍生物(扭结宽度)和附加的积分项。我们认为,整数术语不影响扭结的局部特性,而是控制渐近学处的行为。中心的扭结行为由正弦方程式主导,其宽度往往随幂律指数而增加。特别是当相互作用是库仑排斥时,扭结宽度取决于链尺寸。我们定义了适当的热力学极限,并将我们的结果与无限链进行的现有研究进行了比较。我们的形式主义使人们可以系统地考虑有限尺寸的效果,并慢慢地改变外部电位,例如离子陷阱中的曲率。

We theoretically analyse the equation of topological solitons in a chain of particles interacting via a repulsive power-law potential and confined by a periodic lattice. Starting from the discrete model, we perform a gradient expansion and obtain the kink equation in the continuum limit for a power law exponent $n \ge 1$. The power-law interaction modifies the sine-Gordon equation, giving rise to a rescaling of the coefficient multiplying the second derivative (the kink width) and to an additional integral term. We argue that the integral term does not affect the local properties of the kink, but it governs the behaviour at the asymptotics. The kink behaviour at the center is dominated by a sine-Gordon equation and its width tends to increase with the power law exponent. When the interaction is the Coulomb repulsion, in particular, the kink width depends logarithmically on the chain size. We define an appropriate thermodynamic limit and compare our results with existing studies performed for infinite chains. Our formalism allows one to systematically take into account the finite-size effects and also slowly varying external potentials, such as for instance the curvature in an ion trap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源