论文标题

形状受限的回归使用正方形多项式总和

Shape-Constrained Regression using Sum of Squares Polynomials

论文作者

Curmei, Mihaela, Hall, Georgina

论文摘要

我们提出了半决赛程序(SDP)的层次结构,以解决对未知形状受限函数的嘈杂评估拟合形状约束(多元)多项式的问题。这些形状约束包括盒子上的凸度或单调性。我们表明,在我们的层次结构的任何固定水平上都是最佳的多项式函数形成了基础形状约束函数的一致估计器。作为证明的副产品,我们确定平方符号总和多项式在一个任意盒子上凸的一组多项式中密集。为单调多项式建立了类似的平方型密度结果。此外,我们将凸和单调多项式回归的复杂性分类为多项式回归器程度的函数。虽然我们的结果显示了三分或更高学位的这些问题的NP硬度,但我们可以数值检查我们的基于SDP的回归器通常在层次较低级别的较低级别上达到类似的训练错误。最后,在计算方面,我们介绍了基于SDP的凸回归器与[Hildreth,1954年]和[Holloway,1979]中引入的凸形最小二乘估计量的经验比较,并表明我们的重新定位在设置中很有价值,在该设置中,数据点的数量很大,尺寸相对小。我们证明了回归器在计算色彩传输任务中计算最佳传输图的问题以及估计圆锥程序的最佳价值函数的问题。提出了后一种问题在库存管理合同谈判中的实时应用。

We present a hierarchy of semidefinite programs (SDPs) for the problem of fitting a shape-constrained (multivariate) polynomial to noisy evaluations of an unknown shape-constrained function. These shape constraints include convexity or monotonicity over a box. We show that polynomial functions that are optimal to any fixed level of our hierarchy form a consistent estimator of the underlying shape-constrained function. As a byproduct of the proof, we establish that sum-of-squares-convex polynomials are dense in the set of polynomials that are convex over an arbitrary box. A similar sum of squares type density result is established for monotone polynomials. In addition, we classify the complexity of convex and monotone polynomial regression as a function of the degree of the polynomial regressor. While our results show NP-hardness of these problems for degree three or larger, we can check numerically that our SDP-based regressors often achieve similar training error at low levels of the hierarchy. Finally, on the computational side, we present an empirical comparison of our SDP-based convex regressors with the convex least squares estimator introduced in [Hildreth, 1954] and [Holloway, 1979] and show that our regressor is valuable in settings where the number of data points is large and the dimension is relatively small. We demonstrate the performance of our regressor for the problem of computing optimal transport maps in a color transfer task and that of estimating the optimal value function of a conic program. A real-time application of the latter problem to inventory management contract negotiation is presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源