论文标题
矢量球pr素球波函数具有差异的自由约束
Vectorial ball Prolate spheroidal wave functions with the divergence free constraint
论文作者
论文摘要
在本文中,我们介绍了一个矢量性prate prate球形波函数的真实顺序$α> -1 $在$ r^3 $中的单位球上,该函数满足了无差异约束,因此被称为无差异矢量球pswfs。它们是与有限的傅立叶变换有关的积分操作员的矢量特征函数,并在三个维度上解决了自由差异约束最大浓度问题,即,在多大程度上可以将无带差异矢量功能的总能量集中在单位球上?有趣的是,当在矢量球形谐波中以串联表示时,任何最佳浓缩的无差异函数也应集中在三种矢量球形谐波之一中。此外,没有发散的球PSWF正是二阶Sturm-Liouville差异操作员的矢量特征功能,该操作员定义了标量球PSWF。确实,无差异矢量球PSWF与标量球PSWF具有简单而密切的关系,使它们具有相同的优点。同时,事实证明,通过卷发操作员$ \ nabla \ times $而不是梯度运算符$ \ nabla $,divergence Free Ball PSWF解决了另一个二阶Sturm-Liouville Eigen方程。
In this paper, we introduce one family of vectorial prolate spheroidal wave functions of real order $α>-1$ on the unit ball in $R^3$, which satisfy the divergence free constraint, thus are termed as divergence free vectorial ball PSWFs. They are vectorial eigenfunctions of an integral operator related to the finite Fourier transform, and solve the divergence free constrained maximum concentration problem in three dimensions, i.e., to what extent can the total energy of a band-limited divergence free vectorial function be concentrated on the unit ball? Interestingly, any optimally concentrated divergence free vectorial functions, when represented in series in vector spherical harmonics, shall be also concentrated in one of the three vectorial spherical harmonics modes. Moreover, divergence free ball PSWFs are exactly the vectorial eigenfunctions of the second order Sturm-Liouville differential operator which defines the scalar ball PSWFs. Indeed, the divergence free vectorial ball PSWFs possess a simple and close relation with the scalar ball PSWFs such that they share the same merits. Simultaneously, it turns out that the divergence free ball PSWFs solve another second order Sturm-Liouville eigen equation defined through the curl operator $\nabla\times $ instead of the gradient operator $\nabla$.