论文标题
减少神经机器翻译中的性别偏见作为域的适应问题
Reducing Gender Bias in Neural Machine Translation as a Domain Adaptation Problem
论文作者
论文摘要
NLP任务的培训数据通常表现出性别偏见,句子少于女性而不是男性。在神经机器翻译(NMT)中,性别偏差已被证明可以降低翻译质量,尤其是在目标语言具有语法性别时。最近的Winomt挑战集使我们能够直接衡量这种效果(Stanovsky等,2019)。 理想情况下,我们将通过简单地在培训之前对所有数据进行辩护,从而减少系统偏见,但是有效实现这一目标本身就是一个挑战。我们没有尝试创建“平衡”数据集,而是在一组可信赖的性别平衡示例上使用转移学习。与从头开始的培训相比,这种方法可以在计算成本少得多的性别偏见方面得到强劲而一致的改善。 在新领域的转移学习的已知陷阱是“灾难性遗忘”,我们在适应和推理中既解决了。在适应过程中,我们表明弹性重量巩固可以使一般翻译质量和降低偏差之间的性能权衡。在推理期间,我们提出了一种晶格互补的方案,该方案胜过Winomt中Stanovsky等人(2019)在Winomt上评估的所有系统,而不会降解一般测试集BLEU,我们显示该方案可以应用于“黑框”在线商业MT Systems的输出中的性别偏见。我们演示了我们的方法从英语转换为具有不同语言属性和数据可用性的三种语言。
Training data for NLP tasks often exhibits gender bias in that fewer sentences refer to women than to men. In Neural Machine Translation (NMT) gender bias has been shown to reduce translation quality, particularly when the target language has grammatical gender. The recent WinoMT challenge set allows us to measure this effect directly (Stanovsky et al, 2019). Ideally we would reduce system bias by simply debiasing all data prior to training, but achieving this effectively is itself a challenge. Rather than attempt to create a `balanced' dataset, we use transfer learning on a small set of trusted, gender-balanced examples. This approach gives strong and consistent improvements in gender debiasing with much less computational cost than training from scratch. A known pitfall of transfer learning on new domains is `catastrophic forgetting', which we address both in adaptation and in inference. During adaptation we show that Elastic Weight Consolidation allows a performance trade-off between general translation quality and bias reduction. During inference we propose a lattice-rescoring scheme which outperforms all systems evaluated in Stanovsky et al (2019) on WinoMT with no degradation of general test set BLEU, and we show this scheme can be applied to remove gender bias in the output of `black box` online commercial MT systems. We demonstrate our approach translating from English into three languages with varied linguistic properties and data availability.