论文标题
修改后的Maxwell的Stekloff特征值的有限元近似
Finite Element Approximation of the Modified Maxwell's Stekloff Eigenvalues
论文作者
论文摘要
修改后的麦克斯韦(Maxwell)的斯凯洛夫特征值问题最近源自对不均匀培养基的反电磁散射理论。本文包含对Lipschitz Polyhedra上特征值问题和相关源问题的严格分析。提出了一种新的有限元方法来计算Stekloff特征值。通过应用Babuska-Osborn理论,我们证明了一个错误估计,而没有其他规律性的假设。给出了数值结果以进行验证。
The modified Maxwell's Stekloff eigenvalue problem arises recently from the inverse electromagnetic scattering theory for inhomogeneous media. This paper contains a rigorous analysis of both the eigenvalue problem and the associated source problem on Lipschitz polyhedra. A new finite element method is proposed to compute Stekloff eigenvalues. By applying the Babuska-Osborn theory, we prove an error estimate without additional regularity assumptions. Numerical results are presented for validation.