论文标题

旋转空间中的阴影半径和准模式之间的连接

Connection Between the Shadow Radius and Quasinormal Modes in Rotating Spacetimes

论文作者

Jusufi, Kimet

论文摘要

基于准模式的参数与沿着测量学的保守数量之间的几何镜头对应关系,我们提出了一个方程式,以计算偶然平坦的典型阴影半径,当从\ begin \ begin {等式} \ notag} \ notag} \ notag} \ notag} \ notag} \ notag} \ notag} \ notag} \ notag} \ notag} \ notag} \ notag} \ notag} \ notag} \ notag} \ notag} \ notag} \ bar {r} _s = \ frac {\ sqrt {\ sqrt {2}} {2} {2} \ left(\ sqrt {\ frac {\ frac {r_0^{+}}} {f'(f'(f'(r) r_0^{ - }} {f'(r)| _ {r_0^{ - }}}}}}} \ right),\ end {qore},\ end {qore},$ r_0^{\ pm pm} $是相应模式的圆形null GeoDesics的半径。此外,我们已经将阴影半径与QNM的真实部分明确地关联,分别对应于Prograde和逆行模式。作为一个特殊的例子,我们为一些众所周知的黑洞解决方案计算了典型的黑洞阴影半径,包括Kerr Black Hole,Kerr-Newman Black Hole和Myers-Perry Black Black Sorize the Myers-Perry Black Hole所描述的高维黑洞解决方案。

Based on the geometric-optics correspondence between the parameters of a quasinormal mode and the conserved quantities along geodesics, we propose an equation to calculate the typical shadow radius for asymptotically flat and rotating black holes when viewed from the equatorial plane given by \begin{equation}\notag \bar{R}_s=\frac{\sqrt{2}}{2}\left(\sqrt{\frac{ r_0^{+}}{f'(r)|_{r_0^{+}}}}+\sqrt{\frac{ r_0^{-}}{f'(r)|_{r_0^{-}}}}\right), \end{equation} with $r_0^{\pm}$ being the radius of circular null geodesics for the corresponding mode. Furthermore we have explicitly related the shadow radius to the real part of QNMs in the eikonal regime corresponding to the prograde and retrograde mode, respectively. As a particular example, we have computed the typical black hole shadow radius for some well known black hole solutions including the Kerr black hole, Kerr-Newman black hole and higher dimensional black hole solutions described by the Myers-Perry black hole.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源