论文标题

通过基于高斯过程的探索 - 探索晶格哈密顿量的功能和结构发现

Exploration of lattice Hamiltonians for functional and structural discovery via Gaussian Process-based Exploration-Exploitation

论文作者

Kalinin, Sergei V., Valleti, Mani, Vasudevan, Rama K., Ziatdinov, Maxim

论文摘要

统计物理学模型从简单的晶格到复杂的量子汉密尔顿人是现代物理学的支柱之一,它们允许两十年的科学发现,并提供了一个通用框架,以了解从合金到沮丧和相位分离的材料到量子系统的广泛现象。传统上,使用基本的物理原理,分析近似和广泛的数值建模的组合对对应于哈密顿的多维参数空间的相图进行了探索。但是,对复杂的多维参数空间的探索会遇到经典的维度问题,而集中在低维歧管上的感兴趣的行为仍未发现。在这里,我们证明了探索和探索 - 探索探索与高斯过程建模和贝叶斯优化的结合,可以有效地探索晶格汉密尔顿的参数空间,并有效地绘制最大化特定宏观功能或局部结构的区域。我们认为,这种方法是一般的,可以远远超出晶格哈密顿量,以有效地探索更复杂的非晶格和动态模型的参数空间。

Statistical physics models ranging from simple lattice to complex quantum Hamiltonians are one of the mainstays of modern physics, that have allowed both decades of scientific discovery and provided a universal framework to understand a broad range of phenomena from alloying to frustrated and phase-separated materials to quantum systems. Traditionally, exploration of the phase diagrams corresponding to multidimensional parameter spaces of Hamiltonians was performed using a combination of basic physical principles, analytical approximations, and extensive numerical modeling. However, exploration of complex multidimensional parameter spaces is subject to the classic dimensionality problem, and the behaviors of interest concentrated on low dimensional manifolds can remain undiscovered. Here, we demonstrate that a combination of exploration and exploration-exploitation with Gaussian process modeling and Bayesian optimization allows effective exploration of the parameter space for lattice Hamiltonians, and effectively maps the regions at which specific macroscopic functionalities or local structures are maximized. We argue that this approach is general and can be further extended well beyond the lattice Hamiltonians to effectively explore parameter space of more complex off-lattice and dynamic models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源