论文标题

应变工程MOS2上的Schottky障碍物和电气传输

Strain-engineering the Schottky barrier and electrical transport on MoS2

论文作者

John, Ashby Phillip, Thenapparambil, Arya, Thalakulam, Madhu

论文摘要

应变提供了一种有效的手段来调整电性能,同时保留材料的天然化学成分。与三维固体不同,二维材料承受较高水平的弹性应变,从而更容易调整各种电气特性以满足技术需求。在这项工作中,我们探讨了单轴拉伸应变对双层MOS2(有希望的2D半导体)的电运输特性的影响。与平面振动模式相对应的拉曼移位显示出红移,并指示平面声子模式的软化。照片发光测量结果揭示了直接和间接发射峰的红移,这表明材料带隙减少。运输测量结果显示,对于我们的双层设备,对于硅的高压力量表因子高约321,其电导率的大幅增强。在实验发现中进行的模拟显示,除了MOS2的电阻外,电气接触处的Schottky屏障高度大大降低。我们的研究表明,应变是调整2D材料的电气性能的重要且多才多艺的成分,也可用于设计未来设备工程的高效电触点。

Strain provides an effective means to tune the electrical properties while retaining the native chemical composition of the material. Unlike three-dimensional solids, two-dimensional materials withstand higher levels of elastic strain making it easier to tune various electrical properties to suit the technology needs. In this work we explore the effect of uniaxial tensile-strain on the electrical transport properties of bi- and few-layered MoS2, a promising 2D semiconductor. Raman shifts corresponding to the in-plane vibrational modes show a redshift with strain indicating a softening of the in-plane phonon modes. Photo luminescence measurements reveal a redshift in the direct and the indirect emission peaks signalling a reduction in the material bandgap. Transport measurements show a substantial enhancement in the electrical conductivity with a high piezoresistive gauge factor of ~ 321 superior to that for Silicon for our bi-layered device. The simulations conducted over the experimental findings reveal a substantial reduction of the Schottky barrier height at the electrical contacts in addition to the resistance of MoS2. Our studies reveal that strain is an important and versatile ingredient to tune the electrical properties of 2D materials and also can be used to engineer high-efficiency electrical contacts for future device engineering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源