论文标题

Drinfeld模块和应用

An Equivariant Tamagawa Number Formula for Drinfeld Modules and Applications

论文作者

Ferrara, Joseph, Green, Nathan, Higgins, Zach, Popescu, Cristian D.

论文摘要

我们修复了数据$(k/f,e)$,由galois扩展名$ k/f $ p $ p $ p $ p $全球字段,带有任意的阿贝利安galois $ g $和一个德林菲尔德模块$ e $ $ e $,该$ e $ $ e $定义了$ f $的某些dedekind子。对于此数据,我们定义A $ G $ -Equivariant $ l $ -function $θ_{k/f}^e $ $,并证明了其特殊值$θ_{k/f}^e(0)$的某些Euler填写版本的equivariant tamagawa编号公式。这将taelman的班级编号公式用于goss zeta函数的$ζ_F^e(0)$ $ζ_F^e $与Pair $(F,e)$相关的$ζ_F^e $。 Taelman的结果是通过设置$ k = f $从我们的结果中获得的。结果,我们证明了经典(数字)精制brumer的完美德林菲尔德模块类似物 - stark猜想,将taelman的类别组$ h(e/k)$与特殊值$θ_{k/f}^e(0)$相关联。

We fix data $(K/F, E)$ consisting of a Galois extension $K/F$ of characteristic $p$ global fields with arbitrary abelian Galois group $G$ and a Drinfeld module $E$ defined over a certain Dedekind subring of $F$. For this data, we define a $G$-equivariant $L$-function $Θ_{K/F}^E$ and prove an equivariant Tamagawa number formula for certain Euler-completed versions of its special value $Θ_{K/F}^E(0)$. This generalizes Taelman's class number formula for the value $ζ_F^E(0)$ of the Goss zeta function $ζ_F^E$ associated to the pair $(F, E)$. Taelman's result is obtained from our result by setting $K=F$. As a consequence, we prove a perfect Drinfeld module analogue of the classical (number field) refined Brumer--Stark conjecture, relating a certain $G$-Fitting ideal of Taelman's class group $H(E/K)$ to the special value $Θ_{K/F}^E(0)$ in question.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源