论文标题

OpenMix:在开放世界中发现新颖的视觉类别的复兴知识

OpenMix: Reviving Known Knowledge for Discovering Novel Visual Categories in An Open World

论文作者

Zhong, Zhun, Zhu, Linchao, Luo, Zhiming, Li, Shaozi, Yang, Yi, Sebe, Nicu

论文摘要

在本文中,我们解决了在分配脱节类中标记的数据的未标记视觉数据中发现新类的问题。现有方法通常首先先预先训练带有标记数据的模型,然后通过无标记的数据中的无标记数据中的新类识别新类。但是,在第二步中,提供基本知识的标记数据通常不会被忽视。面临的挑战是,标记和未标记的示例来自非重叠类,这使得很难建立它们之间的学习关系。在这项工作中,我们介绍了OpenMix,以将未标记的示例与已知类别的标记示例混合在一起,在该类别中,它们的非重叠标签和伪标签同时将其混合到关节标签分布中。 OpenMix通过两种方式动态化合物示例。首先,我们通过将标记的示例与未标记的示例结合在一起来产生混合训练图像。有了新颖的阶级发现中独特的先验知识的好处,生成的伪标签将比原始未标记的预测更可信。结果,OpenMix有助于防止模型过度拟合,这些样品可能分配了错误的伪标记。其次,第一种方法鼓励没有标记的示例具有很高的类别准确性。我们将这些示例介绍为可靠的锚点,并将它们与未标记的样品相结合。这使我们能够在未标记的示例中生成更多组合,并利用新类之间的更细微的对象关系。在三个分类数据集上的实验证明了提出的OpenMix的有效性,该启用磁混合物优于新型类发现中的最新方法。

In this paper, we tackle the problem of discovering new classes in unlabeled visual data given labeled data from disjoint classes. Existing methods typically first pre-train a model with labeled data, and then identify new classes in unlabeled data via unsupervised clustering. However, the labeled data that provide essential knowledge are often underexplored in the second step. The challenge is that the labeled and unlabeled examples are from non-overlapping classes, which makes it difficult to build the learning relationship between them. In this work, we introduce OpenMix to mix the unlabeled examples from an open set and the labeled examples from known classes, where their non-overlapping labels and pseudo-labels are simultaneously mixed into a joint label distribution. OpenMix dynamically compounds examples in two ways. First, we produce mixed training images by incorporating labeled examples with unlabeled examples. With the benefits of unique prior knowledge in novel class discovery, the generated pseudo-labels will be more credible than the original unlabeled predictions. As a result, OpenMix helps to prevent the model from overfitting on unlabeled samples that may be assigned with wrong pseudo-labels. Second, the first way encourages the unlabeled examples with high class-probabilities to have considerable accuracy. We introduce these examples as reliable anchors and further integrate them with unlabeled samples. This enables us to generate more combinations in unlabeled examples and exploit finer object relations among the new classes. Experiments on three classification datasets demonstrate the effectiveness of the proposed OpenMix, which is superior to state-of-the-art methods in novel class discovery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源