论文标题
二维Leidenfrost车轮的自发动力学
Spontaneous dynamics of two-dimensional Leidenfrost wheels
论文作者
论文摘要
最近的实验表明,液体液冻土在平坦的热表面上方的蒸气悬浮的液体滴剂会表现出对称性的自发动力学(A. Bouillant等人,自然物理学,14 1188-1192,2018)。在这些观察结果的激励下,我们根据简化的二维模型研究了Leidenfrost落下的翻译和旋转动力学,重点是相对于毛细管长度,近圆形滴度很小。该模型将液滴的运动方程式融合在一起,该方程以刚性轮的流动和薄膜方程,以蒸气流,可变形的蒸气界面的轮廓,因此在滴度上呈水动力和扭矩。与以前的Leidenfrost的分析模型相反,在平坦的表面上方悬浮的液位,这仅预测对称溶液,我们发现对称的Leidenfrost状态在临界下降半径上不稳定:免费下降的$ r_1 $,用于免费下降的$ R_2> R_2> r_1 $用于无动滴。在这些情况下,超临界叉分叉中的对称破裂表现为纯滚动和恒定角速度的稳态。在与实验的进一步定性协议中,当突然释放出对称性破裂的固定掉落时,它最初以加速度$αg$移动,其中$α$是表征液态蒸气型和$ g $的角度,而$ g $是重力加速度;此外,$α$相对于落下半径表现出最大值,半径在表面和滴度之间的温度差时增加。
Recent experiments have shown that liquid Leidenfrost drops levitated by their vapor above a flat hot surface can exhibit symmetry-breaking spontaneous dynamics (A. Bouillant et al., Nature Physics, 14 1188-1192, 2018). Motivated by these observations, we theoretically investigate the translational and rotational dynamics of Leidenfrost drops on the basis of a simplified two-dimensional model, focusing on near-circular drops small relative to the capillary length. The model couples the equations of motion of the drop, which flows as a rigid wheel, and thin-film equations governing the vapor flow, the profile of the deformable vapor-liquid interface and thus the hydrodynamic forces and torques on the drop. In contrast to previous analytical models of Leidenfrost drops levitating above a flat surface, which predict only symmetric solutions, we find that the symmetric Leidenfrost state is unstable above a critical drop radius: $R_1$ for a free drop and $R_2>R_1$ for an immobilized drop. In these respective cases, symmetry breaking is manifested in supercritical-pitchfork bifurcations into steady states of pure rolling and constant angular velocity. In further qualitative agreement with the experiments, when a symmetry-broken immobilized drop is suddenly released it initially moves at an acceleration $αg$, where $α$ is an angle characterizing the slope of the liquid-vapor profile and $g$ is the gravitational acceleration; moreover, $α$ exhibits a maximum with respect to the drop radius, at a radius increasing with the temperature difference between the surface and the drop.