论文标题

启用增量知识转移以进行对象检测边缘

Enabling Incremental Knowledge Transfer for Object Detection at the Edge

论文作者

Bajestani, Mohammad Farhadi, Ghasemi, Mehdi, Vrudhula, Sarma, Yang, Yezhou

论文摘要

使用深神经网络(DNN)的对象检测涉及大量计算,这阻碍了其对资源/能量有限的用户端设备的实现。 DNN成功的原因是由于在观察到的环境的所有不同领域中拥有知识。但是,我们需要在推理时对观察到的环境有限的了解,这可以使用浅神经网络(SHNN)学习。在本文中,提出了一种系统级设计,以改善用户端设备上对象检测的能量消耗。将SHNN部署在用户端设备上,以在观测环境中检测对象。此外,在对象域发生更改时,还可以实现知识传输机制,以使用DNN知识更新SHNN模型。 DNN知识可以通过LAN或Wi-Fi连接到用户端设备的功能强大的边缘设备获得。实验表明,与在用户端设备上运行深层模型相比,用户端设备的能耗和推理时间可以提高78%和71%。

Object detection using deep neural networks (DNNs) involves a huge amount of computation which impedes its implementation on resource/energy-limited user-end devices. The reason for the success of DNNs is due to having knowledge over all different domains of observed environments. However, we need a limited knowledge of the observed environment at inference time which can be learned using a shallow neural network (SHNN). In this paper, a system-level design is proposed to improve the energy consumption of object detection on the user-end device. An SHNN is deployed on the user-end device to detect objects in the observing environment. Also, a knowledge transfer mechanism is implemented to update the SHNN model using the DNN knowledge when there is a change in the object domain. DNN knowledge can be obtained from a powerful edge device connected to the user-end device through LAN or Wi-Fi. Experiments demonstrate that the energy consumption of the user-end device and the inference time can be improved by 78% and 71% compared with running the deep model on the user-end device.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源