论文标题

通过可重构智能表面的联合机器学习智能物联网

Federated Machine Learning for Intelligent IoT via Reconfigurable Intelligent Surface

论文作者

Yang, Kai, Shi, Yuanming, Zhou, Yong, Yang, Zhanpeng, Fu, Liqun, Chen, Wei

论文摘要

随着人工智能和高维数据分析的发展,智能互联网(IoT)将具有变革性的变化,从“连接的事物”转变为“连接的情报”。这将在许多令人兴奋的应用中释放智能物联网的全部潜力,例如自动驾驶汽车,无人驾驶飞机,医疗保健,机器人技术和供应链融资。这些应用程序推动了开发革命性计算,通信和人工智能技术的需求,这些技术可以通过大量的实时数据做出低延迟的决策。为此,出现了联合机器学习作为一种破坏性技术,可以从网络边缘的数据中提取智能,同时确保设备隐私和数据安全性。但是,有限的通信带宽是通过无线电通道的联合机器学习的模型聚合的关键瓶颈。在本文中,我们将通过利用多访问通道的波形叠加属性来开发一个基于空中计算的联合机器学习框架,用于智能IoT网络。可以进一步利用可重新配置的智能表面,以通过重新配置无线传播环境来增强信号强度,以减少模型聚合误差。

Intelligent Internet-of-Things (IoT) will be transformative with the advancement of artificial intelligence and high-dimensional data analysis, shifting from "connected things" to "connected intelligence". This shall unleash the full potential of intelligent IoT in a plethora of exciting applications, such as self-driving cars, unmanned aerial vehicles, healthcare, robotics, and supply chain finance. These applications drive the need of developing revolutionary computation, communication and artificial intelligence technologies that can make low-latency decisions with massive real-time data. To this end, federated machine learning, as a disruptive technology, is emerged to distill intelligence from the data at network edge, while guaranteeing device privacy and data security. However, the limited communication bandwidth is a key bottleneck of model aggregation for federated machine learning over radio channels. In this article, we shall develop an over-the-air computation based communication-efficient federated machine learning framework for intelligent IoT networks via exploiting the waveform superposition property of a multi-access channel. Reconfigurable intelligent surface is further leveraged to reduce the model aggregation error via enhancing the signal strength by reconfiguring the wireless propagation environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源