论文标题

可变速率图像压缩方法与Dead-Zone Quantizer

Variable Rate Image Compression Method with Dead-zone Quantizer

论文作者

Zhou, Jing, Nakagawa, Akira, Kato, Keizo, Wen, Sihan, Kazui, Kimihiko, Tan, Zhiming

论文摘要

与基于转换的常规编解码器相比,基于深度学习的图像压缩方法已经达到了卓越的性能。通过编解码器中的端到端率延伸优化(RDO),压缩模型通过Lagrange乘数$λ$进行了优化。对于常规编解码器,信号与正偏转换不相关,并引入了均匀的量化器。我们提出了一种带有Dead-Zone量化的可变速率图像压缩方法。首先,使用Radogaga \ cite {Radogaga}框架对自动编码器网络进行训练,该框架可以使您的公制均值计量范围(例如SSIM和MSE)。然后,在普通训练的网络中使用具有任意步长的常规死区量化方法,以提供灵活的速率控制。使用Dead-Zone Quantizer,实验结果表明,我们的方法在广泛的比特率范围内与独立优化的模型相当。

Deep learning based image compression methods have achieved superior performance compared with transform based conventional codec. With end-to-end Rate-Distortion Optimization (RDO) in the codec, compression model is optimized with Lagrange multiplier $λ$. For conventional codec, signal is decorrelated with orthonmal transformation, and uniform quantizer is introduced. We propose a variable rate image compression method with dead-zone quantizer. Firstly, the autoencoder network is trained with RaDOGAGA \cite{radogaga} framework, which can make the latents isometric to the metric space, such as SSIM and MSE. Then the conventional dead-zone quantization method with arbitrary step size is used in the common trained network to provide the flexible rate control. With dead-zone quantizer, the experimental results show that our method performs comparably with independently optimized models within a wide range of bitrate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源