论文标题
比特币回报显示的杠杆效应和其他风格化事实
The leverage effect and other stylized facts displayed by Bitcoin returns
论文作者
论文摘要
在本文中,我们使用BTC-USD汇率时间序列探索了比特币市场的一些风格化事实,从2013年到2020年。比特币提出了一些非常特殊的特质,例如缺乏宏观经济基础或与基础资产或基础供应的较强的需求和供应之间和效率之间的需求和供应效率和效率的供应和效率和效率之间的效率和效率。然而,所有这些要素在该虚拟金融资产的结构统计特性的定义中似乎是微不足道的,结果与一般的个人股票或指数类似。相比之下,与菲亚特货币汇率时间序列相比,在线性自相关的值中,我们发现了一些明显的差异,更令人惊讶的是,在存在杠杆作用的情况下。我们还探索了相关性的动态,监视比特币市场演变的变化。该分析能够区分两个不同的方案:一个随机过程,具有较弱的记忆签名,并且在2015年末山之间和2015年末之间更接近高斯性,以及在此间隔之前和之后具有相关相关性和与高斯性相关偏差的动力学。
In this paper, we explore some stylized facts of the Bitcoin market using the BTC-USD exchange rate time series of historical intraday data from 2013 to 2020. Bitcoin presents some very peculiar idiosyncrasies, like the absence of macroeconomic fundamentals or connections with underlying assets or benchmarks, an asymmetry between demand and supply and the presence of inefficiency in the form of strong arbitrage opportunity. Nevertheless, all these elements seem to be marginal in the definition of the structural statistical properties of this virtual financial asset, which result to be analogous to general individual stocks or indices. In contrast, we find some clear differences, compared to fiat money exchange rates time series, in the values of the linear autocorrelation and, more surprisingly, in the presence of the leverage effect. We also explore the dynamics of correlations, monitoring the shifts in the evolution of the Bitcoin market. This analysis is able to distinguish between two different regimes: a stochastic process with weaker memory signatures and closer to Gaussianity between the Mt. Gox incident and the late 2015, and a dynamics with relevant correlations and strong deviations from Gaussianity before and after this interval.