论文标题
在包裹的福卡亚类别和拉格朗日的循环空间中
On the wrapped Fukaya category and the loop space of Lagrangians in a Liouville manifold
论文作者
论文摘要
我们在Liouville歧管$ c _ {*}(ω__{l} \ Mathcal {l} \ Mathcal {l} \ Mathit {ag} $ cohangian cohomanoly lagrangian cohomman flool cohomman floer cohommanifd lileuville com {*}(ω____________}(ω___________})中$ \ mathcal {cw}^{ - *}(l,l)$。如果是cotangent捆绑包和拉格朗日式的纤维,我们地图与先前构造的地图的组成,从$ \ Mathcal {cw}^*(l,l,l)\到c _ {*}(ω_qq)$ $显示了该地图是分裂的。
We introduce an $A_\infty$ map from the cubical chain complex of the based loop space of Lagrangian submanifolds with Legendrian boundary in a Liouville Manifold $C_{*}(Ω_{L} \mathcal{L}\mathit{ag})$ to wrapped Floer cohomology of Lagrangian submanifold $\mathcal{CW}^{-*}(L,L)$. In the case of a cotangent bundle and a Lagrangian co-fiber, the composition of our map with a previously constructed map from $\mathcal{CW}^*(L,L) \to C_{*}(Ω_q Q) $ shows that this map is split surjective.