论文标题

在平行切片中重建多边形之间的多面体

Reconstructing a Polyhedron between Polygons in Parallel Slices

论文作者

Biedl, Therese, Bulatovic, Pavle, Irvine, Veronika, Lubiw, Anna, Merkel, Owen, Naredla, Anurag Murty

论文摘要

给定了两个$ n $ vertex多边形,$ p =(p_1,\ ldots,p_n)$位于$ xy $ - $ z = 0 $的$ xy $ - 平面,$ z = 0 $,$ p'=(p'_1,\ ldots,p'_n)$躺在$ z = 1 $的$ z = 1 $的$ z $ $ z $ $ z $ $ z $ $ z $ y的$ z $ ys triane ys trian and trian and trian and triane an $ p'$这样,三角剖分的边缘包含顶点不相交路径$π_i$连接$ p_i $ to $ i = 1,\ ldots,n $。然后,表面由频段组成,其中$ i $ th频段介于$π_i$和$π_{i+1} $之间。如果存在,我们给出了多项式时间算法以找到一个带状的表面,而无需施泰纳点。我们探索带状表面和线性变形之间的连接,其中的时间与$ z $方向相对应。特别是,我们表明,如果$ p $和$ p'$是凸,线性从$ p $到$ p'$(这将直线上的$ i $ th顶点从$ p_i $移动到$ p'_i $)一直是平面的,那么没有台面的表面没有台器。

Given two $n$-vertex polygons, $P=(p_1, \ldots, p_n)$ lying in the $xy$-plane at $z=0$, and $P'=(p'_1, \ldots, p'_n)$ lying in the $xy$-plane at $z=1$, a banded surface is a triangulated surface homeomorphic to an annulus connecting $P$ and $P'$ such that the triangulation's edge set contains vertex disjoint paths $π_i$ connecting $p_i$ to $p'_i$ for all $i =1, \ldots, n$. The surface then consists of bands, where the $i$th band goes between $π_i$ and $π_{i+1}$. We give a polynomial-time algorithm to find a banded surface without Steiner points if one exists. We explore connections between banded surfaces and linear morphs, where time in the morph corresponds to the $z$ direction. In particular, we show that if $P$ and $P'$ are convex and the linear morph from $P$ to $P'$ (which moves the $i$th vertex on a straight line from $p_i$ to $p'_i$) remains planar at all times, then there is a banded surface without Steiner points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源