论文标题

盲人多帧视频Denoising的自学培训

Self-Supervised training for blind multi-frame video denoising

论文作者

Dewil, Valéry, Anger, Jérémy, Davy, Axel, Ehret, Thibaud, Arias, Pablo, Facciolo, Gabriele

论文摘要

我们提出了一种自我监督的方法,用于培训多框架视频Denoising网络。这些网络可以从t框架周围的框架窗口预测帧t。我们的自我监督方法通过对预测的框架T和相邻目标框架之间的损失进行损失,从而从视频时间的一致性中受益,这些目标框架使用光流对齐。我们使用拟议的在线内部学习策略,在线训练的网络经过微调,以从单个视频中降低一种新的未知噪声类型。经过几帧之后,提议的微调可以达到,有时会超过接受监督训练的最先进网络的性能。此外,对于多种噪声类型,可以盲目应用它而不知道噪声分布。我们通过展示有关不同合成和现实噪声的盲目结果来证明这一点。

We propose a self-supervised approach for training multi-frame video denoising networks. These networks predict frame t from a window of frames around t. Our self-supervised approach benefits from the video temporal consistency by penalizing a loss between the predicted frame t and a neighboring target frame, which are aligned using an optical flow. We use the proposed strategy for online internal learning, where a pre-trained network is fine-tuned to denoise a new unknown noise type from a single video. After a few frames, the proposed fine-tuning reaches and sometimes surpasses the performance of a state-of-the-art network trained with supervision. In addition, for a wide range of noise types, it can be applied blindly without knowing the noise distribution. We demonstrate this by showing results on blind denoising of different synthetic and realistic noises.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源