论文标题
关于外平面图的半播种方向的注释
Note on semi-proper orientations of outerplanar graphs
论文作者
论文摘要
给定图$ g $的半杂制方向是$(d,w)$,是一个方向$ d $,具有重量函数$ w:a(d)\ rightarrow \ mathbb {z} _+$,以至于任何相邻的顶点的权威在$ v $ v $ v $ d $ v $ d $ v $ v $ v $ v $ d n p.弧的权重向$ v $的总和。图$ g $的半播种机导向数,由$ \toserrightArrowχ_s(g)$表示,是所有半传播$(d,w)$ g $的最小值最高$ v $ in $ d $。该参数首先由Dehghan(2019)引入。当所有边缘EQAUL的权重到一个时,此参数等于$ g $的适当方向数。最佳的半播种方向是半播种的方向$(d,w)$,因此$ \ max_ {v \ in v(g)} w_d^ - (v)= \oftrightRightArrowχ_s(g)$。 Araújo等。 (2016年)表明,每个仙人掌$ g $的$ \oferrightArrowχ(g)\ le 7 $,界限很紧。我们证明,对于每个仙人掌$ g $,$ \oferrightarrowχ_s(g)\ le 3 $,绑定很紧。 Araújo等。 (2015年)询问是否有一个常数$ c $,以至于所有外平面图$g。$ $ c $。我们证明,对于每个外平面图$ g,$ $ \ $ \oferrightarrowχ_s(g)\ le 4 $,界限很紧。
A semi-proper orientation of a given graph $G$, denoted by $(D,w)$, is an orientation $D$ with a weight function $w: A(D)\rightarrow \mathbb{Z}_+$, such that the in-weight of any adjacent vertices are distinct, where the in-weight of $v$ in $D$, denoted by $w^-_D(v)$, is the sum of the weights of arcs towards $v$. The semi-proper orientation number of a graph $G$, denoted by $\overrightarrowχ_s(G)$, is the minimum of maximum in-weight of $v$ in $D$ over all semi-proper orientation $(D,w)$ of $G$. This parameter was first introduced by Dehghan (2019). When the weights of all edges eqaul to one, this parameter is equal to the proper orientation number of $G$. The optimal semi-proper orientation is a semi-proper orientation $(D,w)$ such that $\max_{v\in V(G)}w_D^-(v)=\overrightarrowχ_s(G)$. Araújo et al. (2016) showed that $\overrightarrowχ(G)\le 7$ for every cactus $G$ and the bound is tight. We prove that for every cactus $G$, $\overrightarrowχ_s(G) \le 3$ and the bound is tight. Araújo et al. (2015) asked whether there is a constant $c$ such that $\overrightarrowχ(G)\le c$ for all outerplanar graphs $G.$ While this problem remains open, we consider it in the weighted case. We prove that for every outerplanar graph $G,$ $\overrightarrowχ_s(G)\le 4$ and the bound is tight.