论文标题

使用图神经网络对组织病理学图像的表示

Representation Learning of Histopathology Images using Graph Neural Networks

论文作者

Adnan, Mohammed, Kalra, Shivam, Tizhoosh, Hamid R.

论文摘要

整个幻灯片图像(WSI)的表示学习对于开发基于图像的系统以达到诊断病理学的精度更高。我们为WSI表示学习提供了一个两阶段的框架。我们使用基于颜色的方法对相关的补丁进行了采样,并使用图形神经网络来学习采样贴片之间的关系,以将图像信息汇总为单个向量表示。我们通过图形池引入注意力,以自动推断具有更高相关性的斑块。我们证明了我们的方法可以区分肺癌,肺腺癌(LUAD)和肺鳞状细胞癌(LUSC)的两种亚类型的方法。我们收集了1,026个肺癌WSI,并从癌症基因组图集(TCGA)数据集中获得了40 $ \ times $放大倍数,该数据集是组织病理学图像的最大公共存储库,并通过从肺癌子类别中提取肺癌分类的0.89的最先进的准确性为88.8%,AUC为0.89,源自肺癌的分类,并具有从肺癌的分类中提取的预先分类。

Representation learning for Whole Slide Images (WSIs) is pivotal in developing image-based systems to achieve higher precision in diagnostic pathology. We propose a two-stage framework for WSI representation learning. We sample relevant patches using a color-based method and use graph neural networks to learn relations among sampled patches to aggregate the image information into a single vector representation. We introduce attention via graph pooling to automatically infer patches with higher relevance. We demonstrate the performance of our approach for discriminating two sub-types of lung cancers, Lung Adenocarcinoma (LUAD) & Lung Squamous Cell Carcinoma (LUSC). We collected 1,026 lung cancer WSIs with the 40$\times$ magnification from The Cancer Genome Atlas (TCGA) dataset, the largest public repository of histopathology images and achieved state-of-the-art accuracy of 88.8% and AUC of 0.89 on lung cancer sub-type classification by extracting features from a pre-trained DenseNet

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源